RELIEF VALVES

Type VS- FL

Relief Valves

This series of axial flow relief valves was designed to meet a wide range of applications.

Large appreciation from worldwide customers is a guarantee of the reliability and versatility of this product.

The main features are as follows:

- Counterbalanced shutter
- Full strength diaphragm
- Low number of parts
- Modularity design
- Reduced dimensions
- Easy Installation

Available Versions

VS-FL-BP : For low and mid pressure applications. Pilot PRX/182.

VS-FL : For mid and high pressure applications. Pilot PRX/182 or PRX-AP/182.

Also available version with type SR, SRII silencers.

Operation

The diaphragm unit (permanently connected to the shutter) divides the relief valve actuator into two chambers.

The chamber 1 is connected to the atmospheric pressure, chamber 2 is connected to the pilot.

In normal working conditions the two chambers are not containing pressure and the relief valve spring acts on the diaphragm unit and closes the shutter.

If the line pressure exceeds the pilot set point, the pilot allows the gas to flow from the line to chamber 2.

The shutter moves to its open position when the force produced by gas pressure acting on the diaphragm unit becomes greater than the load of the relief valve spring.

Once the excess gas is released and line pressure returns to normal working conditions, the pilot stops the pressure flow, Chamber 2 is no longer being fed, it is emptied through the jet.

The diaphragm unit is pushed upward by the relief valve spring and the shutter moves to its closed position.

Features

Applications

VS-FL relief valves are used in reduction, distribution and conveying stations of suitably filtered natural gas.

This product has been designed to be used with fuel gases of 1st and 2nd family according to EN 437, and with other non aggressive and non fuel gases. For any other gases, other than natural gas, please contact your local sales agent.

Technical Features

Flange rating PN 16 - ANSI 150

Allowable pressure	PN 16	PS	: 16 bar
	ANSI 150	PS	: 20 bar
Set range			
VS-FL-BP PN 16 ANSI 150 DN	25-40-50	W_{d}	: 0.5 to 8 bar
VS-FL-BP PN 16 DN 65-80-10	00-150	W_{d}	: 0.5 to 16 bar
VS-FL-BP ANSI 150 DN 65-80)-100-150	W_{d}	: 0.5 to 19.3 bar

Flange rating ANSI 300/600

Allowable pressure	ANSI 300	PS	:50 bar
	ANSI 600	PS	:100 bar
Set range			
VS-FL ANSI 300 all sizes		W_{d}	: 1 to 50 bar
VS-FL ANSI 600 all sizes		W_{d}	: 1 to 80 bar

Functional Features

Flanged connections

Identical Inlet and outlet : DN 25 - 40 - 50 - 65 - 80 - 100 - 150 - 200* - 250* (*) DN 200 and DN 250 BP versions are not available

Temperature

Standard version Working -10 °C +60 °C

Low temperature version Working -20 °C +60 °C

Materials

Flanges and coversCarbon steelDiaphragmsFabric NBR+PVC/Nitrile rubberPadsNBR Nitrile rubber (FKM available on request)

Calculation Procedures

Symbols

- Q = Natural gas flow rate in Stm³/h
- P1 = Absolute inlet pressure in bar
- P2 = Absolute outlet pressure in bar
- C_g = Flow rate coefficient
- C1 = Body shape factor
- d = Relative density of the gas

Flow Coefficients

D	N	VS-FL-BP	VS-FL-BP-SR	VS-FL	VS-FL-SR	VS-FL-SRII
25	Cg	590	580	590	580	540
23	C1	32,1	33,4	32,1	33,4	33,5
40	Cg	1400	1350	1400	1350	-
40	C1	28	28	28	28	-
50	Cg	2300	2200	2300	2200	2000
50	C1	32,6	33,7	32,6	33,7	33,4
C.F.	Cg	3500	3350	3500	3350	-
65	C1	29	29	29	29	-
00	Cg	5200	5000	5200	5000	4400
80	C1	32,1	33	32,1	33	30,0
100	Cg	8000	7400	8000	7400	6500
100	C1	32,1	32,7	32,1	32,7	32,9
150	Cg	20300	17800	20300	17800	16200
150	C1	27,6	29,8	27,6	29,8	31,7
200	Cg	-	-	30900	-	25335
	C1	-	-	28,6	-	32,3
250	Cg	-	-	52100	-	42500
250	C1	-	-	32,3	-	35,5

Flow Rate Q Sub-critical state with:
$$P2 > \frac{P1}{2}$$

 $Q = 0.525 \cdot C_g \cdot P1 \cdot sine \left(\frac{3417}{C1} \cdot \sqrt{\frac{P1-P2}{P1}} \right)$

N.B. the sine argument is expressed in sexagesimal degree

Critical state with:
$$P2 \le \frac{P1}{2}$$

 $Q = 0.525 \cdot C_g \cdot P1$

For other gases with different densities, the flow rate calculated with the above formulas must be multiplied by the correction factor:

$$F = \sqrt{\frac{0.6}{d}}$$

Gas	Relative Density d	Factor F	
Аіг	1	0.78	
Butane	2.01	0.55	
Propane	1.53	0.63	
Nitrogen	0.97	0.79	

DN Sizes

Calculate the required C_g with the following formula:

Sub-critical with: P2 >
$$\frac{P1}{2}$$

 $C_g = \frac{Q}{0.525 \cdot P1 \cdot sine \left(\frac{3417}{C1} \cdot \sqrt{\frac{P1 - P2}{P1}}\right)^{\circ}}$

N.B. The sine argument is expressed in sexagesimal degree

Critical state with:
$$P2 \le \frac{P1}{2}$$

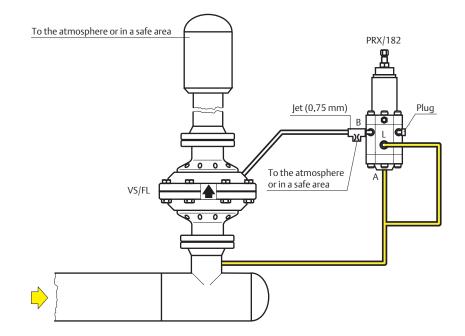
$$C_{g} = \frac{Q}{0.525 \cdot P1}$$

N.B. The above formulas apply to natural gas flow rate only. If the flow rate value (Q) refers to other gasses, divide it by the correction factor F.

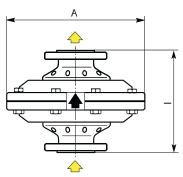
Select the diameter of the relief valve with C_g higher than calculated value. After finding the DN of the relief valve, check that gas speed on the seat does not exceed 120 m/sec, using the following formula:

$$V = 345.92 \cdot \frac{Q}{DN^2} \cdot \frac{1 - 0.002 \cdot Pu}{1 + Pu}$$

V=Velocity (m/s)345.92=Numerical constantQ=Flow rate under standard conditions (Stm³/h)DN=Regulator nominal diameter (mm)Pu=Inlet pressure in relative value (bar)


Pilots

VS-FL relief valves are equipped with the PRX/ series pilots.


Model	Allowable Pressure PS (bar)	Set Range W _d (bar)	Body and Covers Material	
PRX/182	100	0.5 - 40	- Steel	
PRX-AP/182	100	30 - 80	Steel	
N.B.: 1/4" NPT female threaded connections				

Examples of Connections

Overall Dimensions (mm) and Weights (kg)

		Dimensions			Weights	
DN	Face to Face - I		A			
DN	PN 16 - ANSI 150	ANSI 300 - ANSI 600	PN 16 - ANSI 150	ANSI 300 - ANSI 600	PN 16 - ANSI 150	ANSI 300 - ANSI 600
	VS-FL-BP	VS-FL	VS-FL-BP	VS-FL	VS-FL-BP	VS-FL
25	184	210	285	225	24	31
40	222	251	306	265	37	47
50	254	286	335	287	48	60
65	276	311	370	355	68	88
80	298	337	400	400	83	148
100	352	394	450	480	105	201
150	451	508	590	610	255	480
200	-	610	-	653	-	620
250	-	752	-	785	-	1150
Note: For DN 200 ANSI 300 face to face is 568 mm, for DN 250 ANSI 300 face to face is 708 mm.						

Industrial Regulators

Emerson Process Management Regulator Technologies, Inc.

USA - Headquarters McKinney, Texas 75070 USA Tel: +1 800 558 5853 Outside US: +1 972 548 3574

Europe Bologna 40013, Italy Tel: +39 051 419 0611

Asia-Pacific Shanghai 201206, China Tel: +86 21 2892 9000

Middle East and Africa Dubai, United Arab Emirates Tel: +971 4811 8100

Natural Gas Technologies

Emerson Process Management Regulator Technologies, Inc.

USA - Headquarters McKinney, Texas 75070 USA Tel: +1 800 558 5853 Outside US: +1 972 548 3574

Europe

Bologna 40013, Italy Tel: +39 051 419 0611 Chartres 28008, France Tel: +33 2 37 33 47 00

Asia-Pacific Singapore 128461, Singapore Tel: +65 6770 8337

Middle East and Africa Dubai, United Arab Emirates Tel: +971 4811 8100

For further information visit www.emersonprocess.com/regulators

Our Global Product Brands:

The Emerson logo is a trademark and service mark of Emerson Electric Co. All other marks are the property of their prospective owners. Fisher, Tartarini, Francel, Emerson Process Management and the Emerson Process Management design are marks of the Emerson Process Management group of companies.

The contents of this publication are presented for informational purposes only, and while every effort has been made to ensure their accuracy, they are not to be construed as warranties or guarantees, express or implied, regarding the products or services described herein or their use or applicability. We reserve the right to modify or improve the designs or specifications of such products at any time without notice. Emerson Process Management does not assume responsibility for the selection, use or maintenance of any product. Responsibility for proper selection, use and maintenance of any Emerson Process Management product remains solely with the purchaser.

O.M.T. Officina Meccanica Tartarini S.R.L., Via P. Fabbri 1, I-40013 Castel Maggiore (Bologna), Italy R.E.A 184221 BO Cod. Fisc. 00623720372 Part. IVA 00519501209 N° IVA CEE IT 00519501209, Cap. Soc. 1.548 000 Euro i.v. R.I. 00623720372 - M BO 020330 Francel SAS, 3 Avenue Victor Hugo, CS 80125, Chartres 28008, France SIRET 552 068 637 00057 APE 2651B, № TVA : FR84552068637, RCS Chartres B 552 068 637, SAS capital 534 400 Euro

D104061XIT2- 02/2015 - Rev.00©Emerson Process Management Regulator Technologies, Inc., 2015; All Rights Reserved

Emerson Process Management Regulator Technologies, Inc.

USA - Headquarters McKinney, Texas 75070 USA Tel: +1 800 558 5853 Outside US: +1 972 548 3574

LP-Gas Equipment

Emerson Process Management Tescom Corporation

TESCOM

USA - Headquarters

Elk River, Minnesota 55330-2445 USA Tel: +1 763 241 3238 +1 800 447 1250

Europe

Selmsdorf 23923, Germany Tel: +49 38823 31 287

Asia-Pacific Shanghai 201206, China Tel: +86 21 2892 9499

