Giugno 2017

ORGANO DI SGANCIO

INDICE

Organo di Sgancio (Tipo OS2)	da 1 a 3
Introduzione	1
Meccanismo di sgancio (BM)	1
Attuatore manometrico di sicurezza (BMS)	1
Caratteristiche	2
Targhettatura	2
Installazione	3
Dimensioni e pesi	3
Meccanismo di Sgancio (BM)	da 4 a 8
Descrizione e ricambi	4
Funzionamento	5
Connessioni	6
Materiali	6
Messa in funzione	6
Manutenzione	7
Opzioni	7
Attuatore Manometrico di Sicurezza (BMS)	da 8 a 15
Descrizione e ricambi	8
Funzionamento	9
Connessioni	9
Campi di taratura	10
Materiali	12
Taratura	12
Manutenzione	14

INTRODUZIONE

L'organo di sgancio Tipo OS2 è costituito da un meccanismo di sgancio (BM) e da uno o due attuatori manometrici di sicurezza (BMS). La sua funzione è quella di mandare in chiusura la valvola di blocco che può essere: indipendente (Tipo OSE), integrata in un regolatore (Tipo MP, MPS, DRPNPIL, EZH, DRPN ed EZR) o integrata in un K1000/K3000, in caso di sotto o sovrapressione nella rete gas. Può essere montato su sistemi da DN 25 a DN 150 e fino a PN 100.

È a tenuta stagna e resistente all'acqua. Può inviare un segnale di chiusura tramite contatto antideflagrante (sicurezza intrinseca).

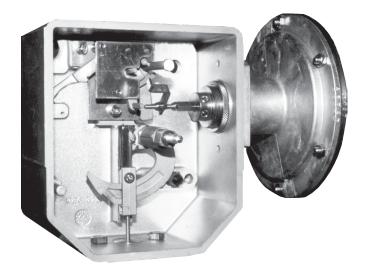


Figura 1. Organo di Sgancio Tipo OS2

MECCANISMO DI SGANCIO (BM)

Il meccanismo di sgancio ha la funzione di mandare in chiusura la valvola di blocco. Il suo funzionamento avviene in due fasi indipendenti: una fase di rilevamento e una fase di potenza, che consentono alta precisione indipendentemente dalla pressione di esercizio, dal diametro della valvola di blocco e dal flusso del gas. Dopo la chiusura della valvola di blocco dovuta alla presenza di condizioni di sovrapressione o sottopressione, l'organo di sgancio deve essere riarmato manualmente. Il sistema completo è disponibile su richiesta, sigillato con piombatura.

ATTUATORE MANOMETRICO DI SICUREZZA (BMS)

L'attuatore manometrico di sicurezza (BMS Tipo 1) rileva i dati di pressione e in caso di condizioni di sovrapressione, di sovrapressione e sottopressione, o di sottopressione causa l'intervento del meccanismo di sgancio (BM).

In alcune configurazioni, può essere utilizzato un secondo attuatore (BMS Tipo 2).

CARATTERISTICHE

Precisione	AG 2,5	Membrana o soffietto
Fiecisione	AG 5	Pistone
Memorizzazione	Nessuna memorizzazione	
Resistenza agli urti verticali	4 J	(20 urti)
Resistenza agli urti pendolari	9,81 J	
Tenuta	IP 67	Immersione temporanea
Pressione massima di esercizio (PSD)	100 bar	
Temperatura di esercizio	Da -30°C a +71°C	
Corsa massima	50 mm	

Tabella 1. Pressione Massima di Esercizio e Precisione del Tipo OS2

DIMENSIONI	162	071	027	017	236	315
PSD	10 bar	20 bar	100 bar	100 bar	35 bar	72 bar
AG max	2,5	2,5	5	5	2,5	2,5

Vedi Tabelle 14, 15 e 16 per altri valori.

Connessioni

Tabella 2. Tipi di Connessioni

Non collegabile	Sfiato in plastica	1/4" NPT
Collegabile	Tubo da 8/10	
Contatto	Uscita scatola	1/2" NPT

TARGHETTATURA

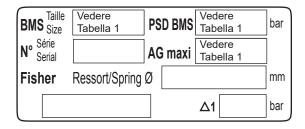


Figura 2. Pressione Massima di Taratura

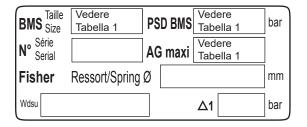


Figura 3. Pressione Minima di Taratura

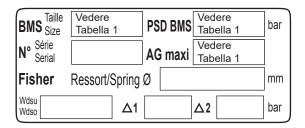


Figura 4. Pressione Massima e Minima di Taratura

TIPI DI INSTALLAZIONE

N01

Montaggio solo su tubazione orizzontale:

Organo di sgancio in alto (valvola indipendente)

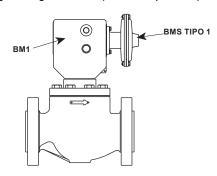


Figura 5. BM 1: Organo di Sgancio con un Attuatore Manometrico di Sicurezza (BMS Tipo 1)

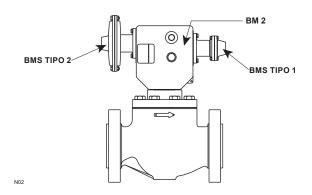


Figura 7. BM 2: Organo di Sgancio con due Attuatori Manometrici di Sicurezza (BMS Tipo 1 e BMS Tipo 2)

Organo di sgancio in basso (valvola integrata e regolatore)

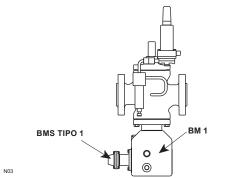


Figura 6. BM 1: Organo di Sgancio con un Attuatore Manometrico di Sicurezza (BMS Tipo 1)

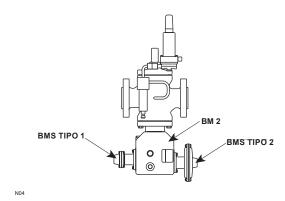


Figura 8. BM 2: Organo di Sgancio con due Attuatori Manometrici di Sicurezza (BMS Tipo 1 e BMS Tipo 2)

DIMENSIONI E PESI

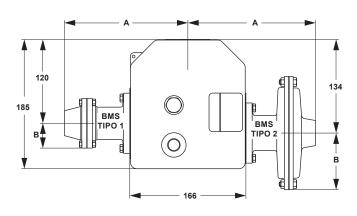
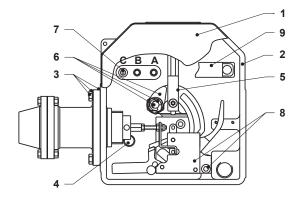


Figura 9. Dimensioni

Tabella 3. Dimensioni e Pesi


	TIPO	DIMENSIONI mm		PESO	
		Α	В	kg	
BM1	Per 1 BMS			2,5	
BM2	Per 2 BMS			2,5	
162	Membrana	181	83	2,6	
71	Membrana	175	36	1,2	
27 o 17	Pistone	204	36	2,3	
236	Soffietto	202	36	2,4	
315	Soffietto	223	36	2,8	
	BM2 162 71 27 o 17 236	BM1 Per 1 BMS BM2 Per 2 BMS 162 Membrana 71 Membrana 27 o 17 Pistone 236 Soffietto	TIPO mi A A A BM1 Per 1 BMS	TIPO mm A B BM1 Per 1 BMS BM2 Per 2 BMS 162 Membrana 181 83 71 Membrana 175 36 27 o 17 Pistone 204 36 236 Soffietto 202 36	

OS2 con un BMS aggiungere il peso del BMS a quello del BM 1. OS2 con due BMS aggiungere il peso dei due BMS a quello del BM 2.

ACCESSORI E PARTI DI RICAMBIO (BM)

Tabella 4. Gruppo Meccanismo di Sgancio

N.	DESCRIZIONE	BM1	BM2	
	Meccanismo di sgancio	FA181067T12	FA181068T12	
4	Coperchio con indicatore, O-ring e vite (nuova versione 06/2007; intercambiabile)	FA181	328T12	
1	O-ring	FA145430X12		
2	Cassa del meccanismo di sgancio	FA142930X12*	FA144071X12	
	Guarnizione	FA1429	30X12*	
•	Guarnizione BMS	FA1454	31X12*	
3	Vite BMS	FA4020	18X12*	
	O-ring vite di tenuta BMS	FA4611	50X12*	
4	Sfiato	27A5516X012		
4	Raccordo di sfiato per tubo 8 x 10	FA406526X12		
5	Forcella	FA181042X12		
	Bullone fisso di arresto (non smontare)	FA142920X12		
6	Bullone	FA181043X12		
	Anello Truarc	FA406	128X12	
7	Fine corsa	FA1403	324X12	
1	Smorzatore	FA127692X12		
8	Meccanismo	FA181041X12		
ŏ	Vite	FA402512X12		
9	Dispositivo di riarmo	FA242	915T12	
Artico	oli venduti come kit, pos. n° FA197351X12. Gli articoli in grassetto sono ricambi.			

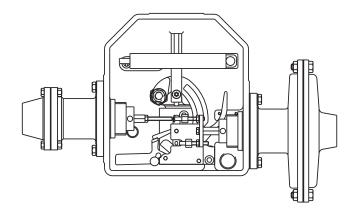


Figura 10. Meccanismo di Sgancio con un BMS

Figura 11. Meccanismo di Sgancio con Due BMS

NO

		PREMISTOPPA Otturatore				
DESCRIZIONE						
	Tipo OSB	Tipo VSE	Standard			
Assieme	FA181089X12	FA181090X12	FA181104X12			
Premistoppa e leva	FA181040X12		FA181040X12			
Premistoppa		144 126				
O-ring	FA400514X12	FA400505X12	FA400514X12			
O-ring		FA400221X12				
Vite di fissaggio H M7	FA402028X12		FA402028X12			
Vite di fissaggio H M8		FA402036X12	FA402036X12			
Rondella (pos. 7)	FA405005X12		FA405005X12			
Rondella (pos. 8)		FA405006X12	FA405006X12			

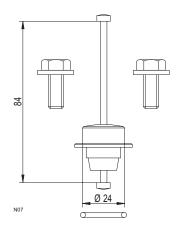


Figura 12. Premistoppa Standard

Ø24 Ø7

Figura 13. Premistoppa Tipo VSE

FUNZIONAMENTO (BM) (FIGURA 14)

Lo stadio di rilevamento è costituito da due parti:

- · La leva di rilascio (pos. 1)
- Il grilletto del 1° stadio (pos. 2).

Attraverso l'attuatore manometrico di sicurezza (BMS), la pressione provoca un movimento del perno (D1 o D2), che provoca la rotazione della leva di rilascio (pos. 1) e libera il grilletto del 1° stadio (pos. 2).

Lo stadio di potenza è costituito da due parti:

- Il grilletto del 2° stadio (pos. 3)
- · La camma (pos. 4).

Il grilletto del 2° stadio (pos. 3), attivato dal grilletto del 1° stadio (pos. 2), libera la camma (pos. 4), che provoca la chiusura della valvola di blocco. Dopo lo scatto, il riarmo è effettuato in due stadi: stadio di rilevamento, poi stadio di potenza, vedere "Messa in funzione".

Indicatore posizione

Lo stato dell'organo di sgancio è visibile attraverso il vetro dell'indicatore di posizione.

Memorizzazione

La leva di rilascio inizierà a muoversi solo quando la pressione si avvicina al valore di taratura. In tutti gli altri casi, rimarrà ferma. Il gruppo ha una resistenza molto elevata agli urti. Se la pressione si avvicina alla taratura, la leva di rilascio ruota, ma per urti minimi o vibrazioni ritorna alla sua posizione iniziale e la pressione torna normale. Ci si riferisce quindi al meccanismo come privo di memorizzazione.

Resistenza agli urti

Questo gruppo ha una notevole resistenza agli urti (20 urti verticali di 4 J e 20 urti pendolari di 9,81 J), anche con pressione prossima alla taratura (per esempio: 186 mbar per una taratura di 200 mbar).

CONNESSIONI (BM)

- · Fissaggio BM/Connettore:
 - Viti H M7 o H M8
 - Coppia da 16 N•m
- · Tenuta BM/connettore:
 - O-ring piatto (resistente all'acqua)
 - Premistoppa (resistente ai gas)
- · Contatto meccanico/valvola di blocco:
 - Barra di controllo
- · Connettore BM/atmosfera:
 - Nipplo di sfiato integrato con protezione (in dotazione) o raccordo a compressione (in dotazione) per tubo da 8/10
 - (non in dotazione)*

· Connessioni elettriche:

Vedere Tabella 9

*Il tubo da 8/10 dovrebbe essere angolato sulla parte superiore per evitare che l'acqua entri.

MATERIALI DEL MECCANISMO DI SGANCIO (BM)

Tabella 6. Materiali del Meccanismo di Sgancio (BM)

	Corpo	Allumino	Cromatura
	Coperchio	Alluminio	Cromatura
Scatola	Indicatore posizione	Policarbonato	
Scatola	Anello autobloccante	Acciaio	Fosfatazione
	Dado coperchio	Acciaio inox	
	Anello di sicurezza	Acciaio	Fosfatazione
	Tutte le parti	HR inossidabile	
	Staffe	Ottone	
Meccanismo	Bullone	Ottone	
ivieccanismo	O-ring elastico	Acciaio	Fosfatazione
	Molla torsione	Acciaio inox	
	Molla trazione	Bronzo	
Forcella	Anello autobloccante	Acciaio	Fosfatazione
	Piano	EPDM	
O-ring	Coperchio	Neoprene (CR)	
	Anello Truarc	Nitrile (NBR)	

Tabella 7. Materiali del Premistoppa

Corpo	Bronzo	
Barra di controllo	Acciaio inox	Cromatura
Anello Truarc	Nitrile (NBR)	

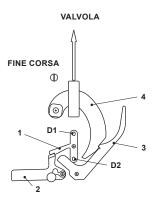


Figura 14. Dettagli del Meccanismo di Sgancio

MESSA IN FUNZIONE (BM)

AVVERTENZA

Solo personale autorizzato. Rischio di infortunio.

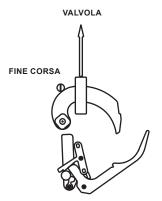
Dopo il riarmo, rimuovere la chiave di riarmo dallo stelo. Non mettere le dita nell'area del meccanismo di riarmo o vicino ad esso.

ATTENZIONE

Non utilizzare mai un tubo di prolunga con la chiave di riarmo per il riarmo del 2° stadio (coppia massima normale 16 N•m, non superare mai i 32 N•m).

La messa in funzione varia in base al tipo di bypass (interno o esterno) del quale è dotato il dispositivo e se è richiesta la funzione di blocco per sovrapressione.

Nota


La posizione del fine corsa (Figura 10, pos. 7) dipende dal tipo di dispositivo e dalle sue dimensioni. La posizione A, B o C dipende dalla corsa massima della valvola di blocco: A = corsa di 15 mm, B = corsa di 35 mm, C = corsa di 50 mm.

· Intervento sul meccanismo di sgancio (BM)

Per accedere al meccanismo è necessario rimuovere il coperchio. Dopo aver allentato il dado, togliere l'anello elastico per rimuovere l'O-ring. Il coperchio è trattenuto da una vite che può essere allentata manualmente o con una chiave a brugola (coppia di serraggio consigliata per una chiusura ottimale: 6 N•m).

Riarmo

Per riarmare la valvola di blocco (dopo che il guasto è stato risolto), si deve innanzitutto riarmare il 1° stadio del meccanismo ruotando manualmente il grilletto del 1° stadio.

VALVOLA DI BLOCCO IN CHIUSURA

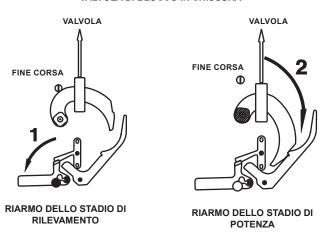


Figura 15. Stadi di Attivazione del Blocco

Se la valvola di blocco ha un bypass interno, la camma deve essere leggermente ruotata utilizzando una chiave di riarmo nel bypass. Se la valvola di blocco ha un bypass esterno, si utilizza una valvola di bypass. In entrambi i casi:

- Attendere il riequilibrio della pressione prima di riarmare il 2° stadio del meccanismo.
- Per riarmare il 2° stadio del meccanismo utilizzare la chiave di riarmo.

MANUTENZIONE (BM)

Attrezzi:

- Chiave 11 (vite 7) e 13 (o 14) (vite 8)
- Cacciavite

Controllo:

- · Scatto del meccanismo del 1° e 2° stadio
- · Il premistoppa è chiuso ermeticamente
- · Ingrassaggio della forcella

Smontaggio:

- · Verificare che il gruppo non sia sotto pressione
- Eseguire il riarmo manuale della valvola di blocco (Figura 14)
- Premere manualmente il perno D1 o D2 della leva di rilascio (Figura 14, pos. 1) parallelo all'asse della BMS

- · Allentare il fine corsa (cacciavite)
- Allentare le viti di fissaggio BM (chiave piatta 11 (vite 7, figura 10) e 13 (o 14) (vite 8, figura 10)
- Disassemblare il meccanismo di gancio (BM) dal connettore sbloccando la forcella

Montaggio:

• Eseguire la procedura di smontaggio in ordine inverso

OPZIONI (BM)

Allarme remoto (su BM1 o BM2)
 Rileva lo scatto del 2° stadio (potenza)

· Comando a distanza

Elettrovalvola (scatto per pressione minima) fino alla pressione massima di 30 bar. Attuatore manometrico di sicurezza (BMS) azionato con impulso pneumatico o elettropneumatico.

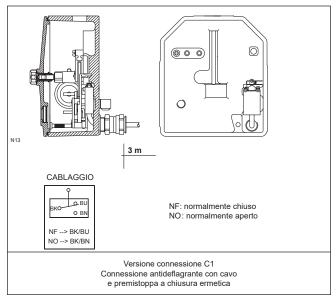

- Comando manuale su BM2 con 1 solo BMS Tipo 1
 Pulsante (collegato nello stesso punto di un BMS Tipo 2).
- Contatto

Tabella 8. Contatti del Meccanismo di Sgancio (BM)

	c.a.	c.c.		
Massima Intensità	7,0 A 0,8 A			
Massima tensione	400 V	250 V		
Protezione	EEx-d IIC T6			
Grado di Protezione	IP 66			
Temperatura	- Da 29° C a + 71° C			
Fissaggio	2 viti M3			
Cavo	3 fili (nero, marrone, blu) H05VVF (3 x 0,75 mm²) D 6,5 mm			

Tabella 9. Versioni Meccanismo di Sgancio (BM)

VERSIONI	INSTALLA-	TENUTA	CONNESSIONE	CONNESSIONI MECCANICHE		CONNES	SIONI EL	ETTRICHE
VERSIONI	ZIONE	IENUIA	CONNESSIONE	CONNESSIONI MECCANICHE	Comune	NF	NO	Connessione
C0		IP 68	Nessuna	Tappo da 1/2 NPT				
C1	ADF	IP 68	ADF	Filo da 3 m	Nero	Blu	Marrone	Fili
C2	ADF	IP 65	ADF	Scatola di connessione antideflagrante/PE	3	4	5	Cablaggio avvitato
C3	SI	IP 68	ADF	Connettore a chiusura ermetica e sicurezza intrinseca	А	В	С	Cablaggio saldato

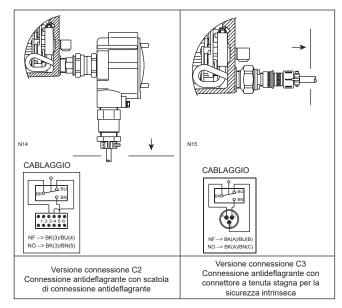


Figura 16. Versioni Connessioni BM

N20

N21

DESCRIZIONE E RICAMBI DELL'ATTUATORE MANOMETRICO DI SICUREZZA (BMS)

· Linea d'impulso

La linea d'impulso (IS) è collegata alla rete da proteggere (normalmente a valle del regolatore).

· Tipo di impulso

A seconda della pressione e della precisione richiesta, possono essere utilizzati diversi tipi di attuatori: membrana, pistone o soffietto.

Molle

Per coprire tutti i campi di taratura, è possibile utilizzare una serie di molle di uguale lunghezza e diametro, ma di diverso diametro del filo (da 2 a 6,5 mm).

Rilevamento

Tabella 10. Configurazioni Rilevamento

		AZIONAMENTO	SOLO MASSIMA	SOLO MINIMA	MASSIMA E MINIMA	
Un	BMS	Vite di scatto	Attiva	Neutra	Attiva	
BMS	1	Gancio	Neutra	Attiva	Attiva	
	BMS	Vite di scatto	Attiva			
Due	1	Gancio	Neutra			
BMS	BMS	Pulsante	Attiva	Neutra	Attiva	
	2	Gancio	Neutra	Attiva	Attiva	

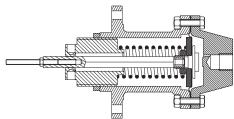


Figura 17. BMS Tipo 1 Solo Massima

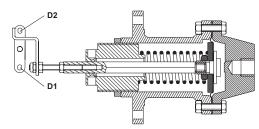


Figura 18. BMS Tipo 1 Solo Minima

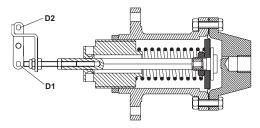


Figura 19. BMS Tipo 1 Massima e Minima

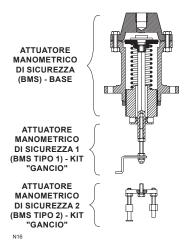


Figura 20. BMS con Membrana

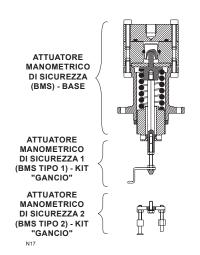


Figura 21. BMS con Pistone

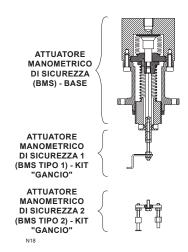


Figura 22. BMS con Soffietto

Tabella 11. Ricambi

DESCRIZIONE		MEMBRANA (MASSIMA E/O MINIMA)		PISTONE (MASSIMA O MINIMA)		SOFFIETTO (MASSIMA E/O MINIMA)		
		162	71	27	17	236	315	
	Scatola completa	FA181071X12	FA181072X12	FA180999X12	FA180998X12	FA181073X12	FA181074X12	
BMS Tipo 1	Base	FA181105T12	FA181106T12	FA181107T12	FA181108T12	FA181109T12	FA181110T12	
	Kit gancio	FA181111T12						
	Scatola completa	FA181084X12	FA181085X12	FA181070X12	FA181069X12	FA181086X12	FA181087X12	
BMS Tipo 2	Base	FA181105T12	FA181106T12	FA181107T12	FA181108T12	FA181109T12	FA181110T12	
	Kit gancio	FA181112T12						
121	Membrana	FA137906X12	FA142549X12					
Kit ricambi	Serie di O-ring	D-ring		FA197352X12				

FUNZIONAMENTO (BMS)

La pressione della rete da proteggere spinge la membrana, il pistone o il soffietto. La forza che ne deriva si oppone alla forza (regolabile) proveniente dalla molla di taratura. Al variare della pressione, la barra di rilevamento si muove e provoca lo scatto dell'organo di sgancio per pressione massima o minima.

CONNESSIONE (BMS)

Sul meccanismo di sgancio: 2 viti H M6x16

(codice FA402018X12)
Tenuta BM: O-ring piatto e O-ring a

tenuta stagna

Sull'attuatore manometrico: Vite da 1/4" NPT Tubo raccomandato: da 8/10 mm

La linea di impulso deve essere collegata a valle del regolatore.

Tabella 12. Pressione Massima di Scatto

PRESSIONE	BMS TIPO 1	BMS TIPO 2	
PRESSIONE	Vite di scatto	Pulsante	
Normale	Senza contatto perno D1	Senza contatto perno D2	
Aumento	Con contatto perno D1	Con contatto perno D2	
= Taratura	Rotazione della leva di rilascio e sgancio grilletto di 1° stadio		

Tabella 13. Pressione Minima di Scatto

PRESSIONE	BMS TIPO 1	BMS TIPO 2		
PRESSIONE	Gancio	Gancio		
Normale	Senza contatto perno D2	Senza contatto perno D1		
Diminuzione	Con contatto perno D2	Con contatto perno D1		
= Taratura	Rotazione della leva di rilascio e sgancio grilletto di 1° stadio			

CAMPI DI TARATURA (BMS)

(Vedere definizioni Tabella 17)

Tabella 14. Campi di Taratura Solo per Massima Pressione

	BMS			M	DLLA	TARAT	URA SOLO MA	SSIMA	CAMPI
						Wdso, bar			Δ1
	Tipo	Dimensioni	Organo di sgancio PMS	ø Filo	Codice	Minima	Campo c	onsigliato	
	Про	Dimension	(bar)	(mm)	Cource	possibile con valore di AG aumentato	Minima	Massima	∆1 (bar)
				2,0	FA113195X12	0,010	0,015	0,035	0,004
				2,5	FA113196X12	0,025	0,040	0,080	0,005
				3,0	FA113197X12	0,045	0,080	0,140	0,010
		162	10	3,5	FA113198X12	0,070	0,070	0,240	0,014
			-	4,0	FA113199X12	0,115	0,140	0,380	0,018
	Membrana			5,0	FA113201X12	0,140	0,300	0,750	0,050
SOLO MASSIMA				5,5	FA113202X12	0,250	0,600	1,3	0,080
				6,5	FA114139X12	0,450	1,2	2,3	0,170
			071 20	4,5	FA113200X12	1,0	2,0	5,1	0,350
				5,5	FA113202X12	2,1	4,0	11,0	0,700
				6,5	FA114139X12	4,0	8,0	16,0	1,6
		027	100	5,5	FA113202X12	16,0	16,0	22,0	3,0
	Pistone	027	100	6,5	FA114139X12	22,0	22,0	40,0	6,5
	ristorie	017	100	5,5	FA113202X12	40,0	40,0	55,0	7,0
		017	100	6,5	FA114139X12	55,0	55,0	100,0	12,0
		236	35	5,5	FA113202X12	5,5	11,0	22,0	1,6
	Soffietto	230	30	6,5	FA114139X12	8,3	16,0	35,0	2,5
		315	72	5,0	FA113201X12	17,5	35,0	72,0	5,0

Tabella 15. Campi di Taratura Solo per Minima Pressione

	BMS		МС	DLLA	TARA	TURA SOLO M	NIMA	CAMPI	
						Wdsu, bar			Δ1
	Tipo	Dimensioni	Organo di sgancio	ø Filo	Codice	Minima	Campo c	onsigliato	
	Про	Dimension	PMS (bar)	(mm)	Cource	possibile con valore di AG aumentato	Minima	Massima	∆1 (bar)
				2,0	FA113195X12	0,010	0,015	0,035	0,004
				2,5	FA113196X12	0,025	0,040	0,080	0,005
				3,0	FA113197X12	0,045	0,080	0,150	0,010
		162	10	3,5	FA113198X12	0,070	0,070	0,240	0,014
			-	4,0	FA113199X12	0,115	0,150	0,400	0,018
	Membrana			5,0	FA113201X12	0,140	0,300	0,650	0,050
SOLO				5,5	FA113202X12	0,250	0,600	1,15	0,080
				6,5	FA114139X12	0,450	1,1	2,0	0,170
			20	4,5	FA113200X12	1,0	2,0	4,7	0,350
				5,5	FA113202X12	2,1	4,0	9,5	0,700
				6,5	FA114139X12	4,0	8,0	14,4	1,6
		027	100	5,5	FA113202X12	16,0	16,0	19,0	3,0
	Pistone	021	100	6,5	FA114139X12	19,0	19,0	38,0	6,5
	FISIONE	017	100	5,5	FA113202X12	38,0	38,0	50,0	7,0
		017	100	6,5	FA114139X12	50,0	50,0	90,0	12,0
		236	35	5,5	FA113202X12	5,5	11,0	16,0	1,6
	Soffietto	200	33	6,5	FA114139X12	8,3	16,0	28,0	2,5
		315	72	5,0	FA113201X12	17,5	28,0	65,0	5,0

Tabella 16. Campi di Taratura per Massima e per Minima Pressione

	BMS		MOLLA		TARATURA MASSIMA E MINIMA		CAMPI Δ1 e Δ2		
			Organo di	ø Filo (mm)		Wdsu	ı (bar)	Δ1 € Δ2	
	Tipo	Dimensioni	sgancio PMS (bar)		Codice	Minima	Massima	∆1 (bar)	∆2 (bar)
				2,0	FA113195X12	0,010	0,035	0,004	0,010
				2,5	FA113196X12	0,025	0,080	0,005	0,025
				3,0	FA113197X12	0,045	0,140	0,010	0,050
		162	10	3,5	FA113198X12	0,070	0,240	0,014	0,060
				4,0	FA113199X12	0,115	0,380	0,018	0,150
MASSIMA E	Membrana			5,0	FA113201X12	0,140	0,750	0,050	0,350
MINIMA				5,5	FA113202X12	0,230	1,3	0,080	0,600
				6,5	FA114139X12	0,450	2,3	0,170	1,1
		071	20	4,5	FA113200X12	1,0	5,1	0,350	2,5
				5,5	FA113202X12	2,1	11,0	0,700	5,5
				6,5	FA114139X12	4,0	16,0	1,6	10,0
	Pistone	027			Impo	ssibile con 1 sola	BMS		
	FISIONE	017			inpos	2010 1 2014	OIVIO		
		236	35	5,5	FA113202X12	5,5	16,0	1,6	10,0
	Soffietto	200	35	6,5	FA114139X12	8,3	28,0	2,5	20,0
		315	72	5,0	FA113201X12	17,5	65,0	5,0	33,0

Definizioni

Tabella 17. Definizioni

PSD	Pressione massima di esercizio per l'organo di sgancio
Pd	Pressione di valle
Pd max	Pressione massima di valle
Pd min	Pressione minima di valle
Pdo	Pressione massima di sgancio
Massima taratura di massima	Valore massimo della taratura blocco per massima pressione
Massima taratura di minima	Valore massimo della taratura blocco per minima pressione nel contesto della classe di precisione
Massimo possibile della taratura di minima	Valore massimo possibile della taratura di minima (la precisione non è garantita)
Pdu	Pressione minima di sgancio
Minima taratura di massima	Valore minimo della taratura blocco per massima pressione
Minima taratura di minima	Valore minimo della taratura blocco per minima pressione nel contesto della classe di precisione
Minimo possibile della taratura di minima	Valore minimo possibile della taratura di minima (la precisione non è garantita)
Wdso	Campo di sovrapressione della valvola di blocco
Wdsu	Campo di sottopressione della valvola di blocco
Δ1	Differenza minima consentita tra Pdo e Pd max e/o tra Pdu e Pd min
Δ2	Differenza massima consentita tra pressione massima e minima di sgancio

Linee Guida per la Selezione: Limitazioni di Pressione

Tabella 18. Limitazioni di Pressione

SOLO MASSIMA	SOLO MINIMA	MASSIMA E MINIMA
Pdo ≤ attuatore manometrico PSD (BMS)	Pd max < attuatore manometrico PSD (BMS)	Pdo ≤ attuatore manometrico PSD (BMS)
Pdo ≤ Pt punto alto	Pdu ≤ Pt punto alto	Pdo ≤ Pt punto alto
Pdo ≥ Pt punto basso	Pdu ≥ Pt punto basso	Pdo ≥ Pd max + ∆1
Pdo ≥ Pd max + ∆1	Pdu ≥ Pd min - Δ1	Pdu ≥ Pt punto più basso possibile
		Pdu ≤ Pd min - ∆1
		Pdo - Pdu ≤ ∆2

Nota

Quando la taratura (massima o minima) cade tra quella possibile e quella consigliata, la precisione può passare a un campo superiore (esempio AG 2,5 —> AG 5). Se la taratura è troppo vicina a Pd, si raccomanda l'opzione di intervento RJGI (consultare il costruttore). Nel caso di due attuatori manometrici di sicurezza (BMS) entrambi gli attuatori devono avere un PSD > al Pdo più alto.

Selezione di BMS e molle

Scegliere il tipo di attuatore manometrico di sicurezza (BMS) in base alla pressione massima ammissibile e alla precisione richiesta.

Scelta molle:

· Solo Massima o Minima

Scegliere la molla che consente la taratura massima immediatamente superiore alla pressione di scatto richiesta.

• Massima e Minima

Scegliere la molla che consente la taratura massima immediatamente superiore alla pressione di scatto massima richiesta, e la molla che consente la taratura minima inferiore alla minima pressione di scatto richiesta.

Tabella 19. Scelta BMS e Molle

PSD	MEMBRANA	SOFFIETTO	PISTONE
Da 0 a 20			
Da 20 a 72		(*)	
Da 72 a 100			
AG 2,5			
AG 5			
Solo Massima			
Solo Minima			
Massima e Minima			

^(*)Scelta tra pistone (standard) e soffietto (opzionale). Il soffietto è consigliato se si richiede una piccola differenza tra la pressione di scatto e la pressione di ingresso e una migliore precisione. I pistoni non facilitano lo scatto minimo e massimo.

MATERIALI (BS)

Tabella 20. Materiali BMS

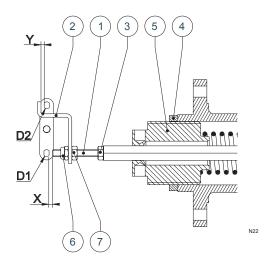
	MEMBRANA	SOFFIETTO	PISTONE		
Reggimolla	Acciaio	Acciaio inox			
Canotto	Alluminio + Cromatura				
Membrana	Gomma NBR telata				
Pistone			Acciaio inox		
Soffietto		Acciaio inox			
Molla					
Vite di taratura		Acciaio zincato			

TARATURA (BMS)

SOLO PERSONALE AUTORIZZATO

Rischio di infortunio

Dopo il riarmo, rimuovere la chiave di riarmo dallo stelo. Non mettere le dita nell'area del meccanismo di riarmo o vicino ad esso.


In generale, le tarature vengono effettuate con la valvola di blocco chiusa. Viene riarmato solo lo stadio di rilevamento. Il controllo del valore di scatto può essere ottenuto riarmando i due stadi.

Prima di ogni taratura, verificare che il campo di taratura delle molle installate corrisponda alla taratura richiesta.

BMS Tipo 1 (Figure da 20 a 22)

Scatto Solo per Massima Pressione

X =distanza tra la vite di scatto e il perno D1 Y =distanza tra la vite di scatto e il perno D2

Figura 23. Scatto Solo per Massima Pressione

· Regolazione della vite di scatto

- Liberare il gancio (pos. 2), poi nelle condizioni seguenti:
 - nessuna pressione nell'attuatore manometrico di sicurezza (BMS)
 - molla di di taratura portata a pacco in modo che la distanza tra la vite di scatto e il perno D1 non possa aumentare
- Tarare la vite di scatto (pos. 1) su
 X = 1,5 mm (stadio di rilevamento impostato)
- Bloccare il dado (pos. 3)

Taratura della pressione di scatto solo per massima pressione

- Lasciare salire la pressione di scatto sino al valore Pdo
- Serrare la vite di taratura (pos. 5) fino a quando è possibile impostare lo stadio di rilevamento
- Allentare la vite di taratura (pos. 5) fino allo scatto dello stadio di rilevamento
- Controllare il valore di pressione al punto di scatto (tarare se necessario).
- Bloccare il dado (pos. 4)

Scatto Solo per Minima Pressione

· Regolazione della vite di scatto

- Liberare il gancio (pos. 2), poi nelle condizioni seguenti:
 - molla di taratura decompressa (vite di taratura (pos. 5) allentata)
 - pressione pari alla pressione di scatto richiesta dal valore Pd min del BMS

- Regolare la vite di scatto (pos. 1) su X = 2 mm (stadio di rilevamento impostato)
- Bloccare il dado (pos. 3)
- Mettere il gancio (pos. 2) in posizione e tarare
 Y = 1,5 mm con dadi (pos. 6) e (pos. 7)
- Bloccare i dadi (pos. 6) e (pos. 7).

Taratura della pressione di scatto solo per minima pressione

- Continuare a lasciare salire la pressione. Avvitare la vite di taratura (pos. 5) fino allo scatto dello stadio di rilevamento.
- Controllare il valore di pressione al punto di scatto (tarare se necessario).
- Bloccare il controdado (pos. 4).

Scatto per Massima e Minima Pressione (Solo Membrana o Soffietto)

· REgolazione della vite di scatto

- Liberare il gancio (pos. 2), poi nelle condizioni seguenti:
 - molla di taratura decompressa (vite di taratura (pos. 5) allentata),
 - pressione pari alla pressione massima di scatto richiesta dal BMS,
- Regolare la vite di scatto (pos. 1) su X = 0 mm (stadio di rilevamento impostato).
- Fare scattare manualmente.
- Allentare la vite di scatto (pos. 1) di 2 giri, valore che rappresenta una distanza di circa 1,5 mm.
- Bloccare il dado (pos. 3).

· Regolazione della taratura massima pressione

- Stessa procedura del paragrafo "Taratura della pressione di scatto solo per massima pressione".

· Regolazione della taratura per minima pressione

- Regolare la pressione tra i valori di massima e di minima, (per esempio: pressione di taratura del regolatore)
- Tarare la valvola di blocco
- Regolare la pressione ad un valore pari a Pd min della pressione di scatto richiesta
- Tarare il gancio (pos. 2) muovendo progressivamente i dadi (pos. 6) e (pos. 7) fino allo scatto
- Bloccare i dadi (pos. 6) e (pos. 7)
- Controllare il valore della pressione nel punto di scatto (regolare se necessario).

BMS Tipo 2 con 1 BMS Tipo 1 Solo Massima

Scatto Solo per Massima Pressione

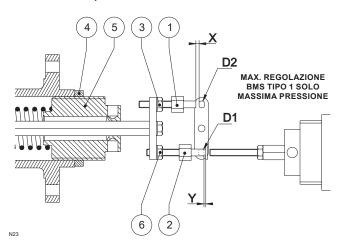


Figura 24. BMS 2 - Scatto Solo per Massima Pressione

· Regolazione del pulsante per massima pressione

- Rimuovere il gancio (pos. 2), quindi nelle seguenti condizioni:
 - · nessuna pressione nella BMS
 - molla di taratura compressa in modo che la distanza tra il pulsante (pos. 1) e il perno D2 non aumenti più
- Tarare il pulsante (pos. 1) su X = 1,5 mm (stadio di rilevamento impostato)
- Bloccare il dado (pos. 3).

Regolazione della pressione di scatto solo per massima pressione

 Stessa procedura del paragrafo "Taratura della pressione di scatto solo per massima pressione".

Scatto Solo per Minima Pressione

Taratura della pressione di scatto solo per minima pressione

- Rimuovere il pulsante per massima pressione (pos. 1) o serrarlo a fondo per neutralizzarlo
- Bloccare il dado (pos. 3), quindi nelle seguenti condizioni:
 - molla di taratura decompressa (vite di taratura (pos. 5) allentata)
 - pressione pari alla pressione di scatto richiesta dal BMS, regolare il gancio (pos. 2) a Y = 1,5 mm (stadio di rilevamento impostato)
- Bloccare il dado (pos. 6).

Taratura della pressione di scatto solo per minima pressione

 Stessa procedura del paragrafo "Taratura della pressione di scatto solo per massima pressione".

Scatto per Massima e Minima Pressione

· Regolazione del pulsante

- Il gancio (pos. 2) è completamente allentato, quindi nelle seguenti condizioni:
 - · molla di taratura decompressa (vite di taratura (pos. 5) allentata),
 - pressione pari alla pressione massima di scatto richiesta dal BMS
- Tarare il pulsante (pos. 1) su X = 0 mm (stadio di rilevamento impostato)
- Rilasciare manualmente
- Allentare il pulsante (pos. 1) di 2 giri, valore che rappresenta una distanza di circa 1,5 mm
- Bloccare il dado (pos. 3).

Regolazione della pressione di scatto per massima e minima pressione

- Regolazione del valore di scatto solo per massima pressione
 - Stessa procedura del paragrafo "Regolazione della pressione di scatto solo per massima pressione".

Regolazione del valore di scatto solo per minima pressione

- · Regolare la pressione tra i valori di massima e di minima,
 - (per esempio pressione di taratura del regolatore)
- · Impostazione dello stadio di rilevamento
- Regolare la pressione ad un valore pari a quella minima di scatto richiesta
- Serrare progressivamente il gancio (pos. 2) fino allo scatto dello stadio di rilevamento
- · Bloccare il dado (pos. 6)
- Controllare il valore della pressione nel punto di scatto (regolare se necessario).

MANUTENZIONE (BMS)

Controllo

La valvola di sicurezza e gli accessori per la pressione sono soggetti a normale usura e devono essere ispezionati periodicamente e, se necessario, sostituiti.

- Scatto della valvola di blocco
- Chiusura ermetica
- Membrana, soffietto o pistone

La frequenza delle ispezioni, dei controlli e delle sostituzioni dipende dalla severità delle condizioni di servizio e deve essere conforme ai codici nazionali o industriali, alle norme e alle regolamentazioni/ raccomandazioni applicabili.

· Smontaggio

- Allentare il connettore dalla linea di impulso
- Rimuovere l'attuatore manometrico di sicurezza (BMS)

- Allentare il dado di bloccaggio sulla vite di taratura (manualmente)
- Allentare la vite di taratura
- Rimuovere il gancio o la piastra, a seconda del Tipo,
 BMS 1 o 2, dalla barra di rilevamento (chiave piatta 7)
- Rimozione del coperchio superiore

BMS 162 (chiave piatta 11)BMS 071 (chiave piatta 8)

Pistone BMS 27/17 (pos. 5)Soffietto BMS 236/315 (pos. 5)

- Smontare la piastra di regolazione/contropiastra (chiave piatta 17 e pinze), oppure
- Rimuovere il soffietto o il pistone e la guida (manualmente)

Rimontaggio

- Eseguire la procedura di smontaggio in ordine inverso

· Valori di coppia BMS

- Cannotto superiore/attuatore manometrico

BMS 162: 8 N•m
 BMS 071: 5 N•m
 Pistone BMS 27/17: 6 N•m
 Soffietto BMS 236/315: 6 N•m

- BMS 162 e 071 dado/piastra membrana: 20 N•m

G Fisher.com

Facebook.com/EmersonAutomationSolutions

in LinkedIn.com/company/emerson-automation-solutions

Twitter.com/emr_automation

Emerson Automation Solutions

America

McKinney, Texas 75070 USA T +1 800 558 5853 +1 972 548 3574

Europa

Bologna 40013, Italia T +39 051 419 0611

Asia

Singapore 128461, Singapore T +65 6777 8211

Medio Oriente e Africa

Dubai, Emirati Arabi Uniti T +971 4 811 8100 D103683XIT2 © 2020 Emerson Process Management Regulator Technologies, Inc. Tutti i diritti riservati. 04/2020.

Technologies, Inc. Tutti i diritti riservati. 04/2020. Il logo Emerson è un marchio registrato ed operativo di Emerson Electric Co. Tutti gli altri marchi appartengono ai loro rispettivi proprietari. Il marchio Tartarini™ è di proprietà di O.M.T. Officina Meccanica Tartarini s.r.l., appartenente al gruppo Emerson Automation Solutions.

I contenuti di questa pubblicazione sono presentati a solo scopo di informazione e, pur essendo stato profuso ogni sforzo per assicurare la loro accuratezza, essi non sono da intendersi come giustificazione o garanzia, espressa o implicita, che riguarda i prodotti o i servizi qui descritti o il loro uso o la loro applicazione. Ci riserviamo il diritto di modificare o migliorare il progetto o le specifiche di tali prodotti in ogni momento e senza preavviso.

Emerson Process Management Regulator Technologies, Inc., non assume alcuna responsabilità per la scelta, uso e manutenzione di qualsiasi prodotto. La responsabilità per l'idonea scelta, uso e manutenzione di qualsiasi prodotto Emerson Process Management Regulator Technologies, Inc., rimane interamente a carico dell'acquirente.

